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It has been suggested that, high b-value diffusion weighted

MRI improves the sensitivity and specificity of these images

to tissue microstructure when compared with ‘‘clinical’’ b-

value diffusion weighted MRI (b � 1000 s/mm2). However, it

suffers from poor signal to noise ratio - leading to longer ac-

quisition times and therefore more motion artifacts. Together

with the orientational sensitivity of the diffusion weighted MRI

signal, the contrast at different b-values and different gradient

directions is significantly different. These features of high b-

value diffusion images preclude the ability to perform conven-

tional image-registration-based motion/distortion correction.

Here, we suggest a framework based on both experimental

data (diffusion tensor MRI) and simulations (using the com-

posite hindered and restricted model of diffusion framework)

to correct the motion induced misalignments and artifacts of

high b-value diffusion weighted MRI. This approach was eval-

uated using visual assessment of the registered diffusion

weighted MRI and the composite hindered and restricted

model of diffusion analysis results, as well as residual analy-

sis to assess the quality of the composite hindered and re-

stricted model of diffusion fitting. Both qualitative and

quantitative results demonstrate an improvement in fitting the

data to the composite hindered and restricted model of diffu-

sion model following the suggested registration framework,

thereby, addressing a long-standing problem and making the

correction of motion/distortions in data collected at high b-

values feasible for the first time. Magn Reson Med 67:1694–

1702, 2012. VC 2011 Wiley Periodicals, Inc.
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High b-value diffusion MR imaging provides an
enhanced contrast toward different cellular components
(1,2) when compared with ‘‘clinical’’ diffusion MRI (b �
1000 s/mm2). Combined with an appropriate model, the
analysis of low and high b-value diffusion images may
provide a comprehensive tissue characterization, ena-
bling improved sensitivity and specificity of diffusion
weighted MRI (DW-MRI) to healthy tissue microstructure
and subtle pathology, especially in white matter (3,4).

Diffusion tensor MRI (DT-MRI) is a well-accepted

framework for analysis of diffusion-weighted images

(measured at low b-values up to � 1500 s/mm2) and is

mainly used to characterize white matter microstructure

(5,6) and, by following the direction of greatest apparent

diffusivity in each voxel, allows the reconstruction of

three-dimensional fiber tracts (7). However, the resulting

DT-MRI parameters represent an average of the diffusion

properties in each voxel and in areas of intra-voxel heter-

ogeneity, e.g., cerebrospinal fluid (CSF) or gray matter

interfaces, affected by partial volume contamination, DT-

MRI can fail to reveal the real microstructural properties

of the tissue of interest (usually the white matter). DT-

MRI’s inability to resolve crossing fibers stems from the

constraints of the tensor model, which assumes a single

unimodal gaussian diffusion displacement profile (8). Q-

space imaging (4,9), diffusion spectrum magnetic reso-

nance imaging (DSI) (10), hybrid imaging (11), and the

composite hindered and restricted model of diffusion

(CHARMED) (3) are alternative models to DT-MRI that

use both low and high b-value diffusion weighted data.

These approaches overcome the major limitation of DT-

MRI by using various nonmono-exponential attenuation

models to infer on tissue microstructure. Using such

methodologies, it is possible to extract physical and geo-

metrical parameters regarding the orientation, diffusivity,

and fractional volume for each of the components of the

fiber system that contribute to the diffusion-weighted

signal, allowing resolution of crossing fibers.

Despite the advantages conferred through high b-value

diffusion imaging, the signal loss is much higher than in

DT-MRI. Consequently, it suffers from poor signal to

noise ratio, which is compensated for by lowering the

resolution and/or collecting more data—leading to long

acquisition times. This presents a serious challenge,

even to the most motivated of volunteers, to remain per-

fectly still in the scanner while the entire set of DW-MR

images is collected.

The most frequently adopted approach to correct for

motion is to use image registration techniques to coregis-

ter each diffusion-weighted image to a reference image

(usually the first b ¼ 0 s/mm2 image collected). Given

the orientational sensitivity of the DW-MRI signal, cost-

functions such as crosscorrelation and least-squares—

used for intra-modal coregistration, are ineffective—and

cost-functions such as mutual information (12) or its nor-

malized variant (13) are used.
Another issue with high b-value DW-MRI concerns the

remarkable change in contrast at different b-values and
different gradient directions. At any b-value, the signal
attenuation is orientationally variant—such that minimal
signal attenuation occurs perpendicular to the long axis
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of a bundle of coherently oriented fibers and increases as
the angle between the encoding vector and the long axis
of the fibers increases. At high b-values, a residual signal
remains when encoding perpendicular to the fibers, but
in other orientations the signal is significantly attenu-
ated, often reaching the noise floor (14). Consequently,
the resulting DW-MRI contrast at the same b-value
between different gradient orientations and also for the
same direction with different b-values is not comparable.
Moreover, at high b-values (above 3000 s/mm2), the sig-
nal intensity is attenuated to such an extent that the
edges of CSF, gray and white matter regions, and the out-
line of the brain are undefined. Combined, this means
that image-feature based registration methods (including
those that use entropy-driven cost-functions such as mu-
tual information), will fail to correct for distortions and
motion. Hence, the credibility of any inferences that are
subsequently drawn from voxel-wise fitting of a model to
such data decreases dramatically.

To the best of our knowledge, there has been no
method published to date that allows for such images to
be coregistered accurately. One possible workaround is
to interleave low b- and high b-value images and correct
for motion by applying the transformations derived from
the low b-value images to the high b-value images that
follow. However, this workaround results in longer scan
duration, and it only offers indirect and incomplete
motion correction—especially because the image contrast
between a low and high b-value weighted image is so
different in anisotropic tissue.

The goal of this work was to develop an image regis-
tration method that would robustly correct the motion
induced misalignments and artifacts of high b-value DW-
MR images. We suggest a framework based on both ex-
perimental data (DT-MRI) and simulations (using the
CHARMED framework) to register the high b-value diffu-
sion images. The proposed method can be applied to
high b-value DW-MRI as a preprocessing registration
step before any analysis.

MATERIALS AND METHODS

Subject and Image Acquisition

Sixteen healthy young subjects (20–40 years) were
scanned on a 3 T (GE) MRI system in Tel Aviv Sourasky
Medical Center, Israel. The protocol was approved by
the local institutional review boards and all volunteers
signed an informed consent. The MRI protocol included
a set of echo planar diffusion-weighted images. The dif-
fusion MRI protocol included whole brain DT-MRI and
CHARMED acquisitions.

DT-MRI data were acquired along 19 unique gradient
axes with a b-value of 1000 s/mm2 and an additional
image at b ¼ 0 s/mm2 with the following parameters:
pulse repetition time/echo time ¼ 15,000/91 ms, three
averages (number of excitations), field of view ¼ 20.2
cm, matrix size 128 � 128, giving a resolution of 1.58 �
1.58 � 2.1 mm3. The scan time was 17 min.

CHARMED data were acquired along 34 gradient axes
and additional b ¼ 0 s/mm2 in a multi b-shell acquisi-
tion with increasing number of gradient directions with
the increase in b-value (six directions for 208 s/mm2, 12

for 2240 s/mm2. and 16 for 3990 s/mm2), using the fol-
lowing parameters: pulse repetition time/echo time ¼
13,000/97 ms, D/d ¼ 43/33 ms, Gmax ¼ 4 G/cm, field of
view ¼ 19 cm, matrix size 128 � 128, giving a resolution
of 1.5 � 1.5 � 3 mm3. The scan time was 19 min.

In the majority of the acquired datasets, the subject
was instructed to remain as still as possible during the
acquisition. Yet, the resulting DW-MR images were
slightly-moderately misaligned due to typical subject
motion, which depends on subject respiration and level
of compliance/motivation.

To strictly test the ability of the suggested framework
to correct for motion, we acquired a CHARMED dataset
in which the subject was asked to move his head deliber-
ately (about 10� rotations) before a nondiffusion-
weighted and another 7–8 diffusion-weighted images
were acquired. This was repeated four times to complete
a dataset according to the gradient scheme specified
above. The resulting DW-MR images were significantly
misaligned due to the severe motion.

Registration and Analysis Process

The registration and analysis pipeline (Fig. 1) is
designed as follows:

DT-MRI Image Analysis

The images were corrected for motion with affine (six
parameters), normalized-mutual-information-based regis-
tration with respect to the b ¼ 0 s/mm2 using SPM2 with
appropriate reorientation of gradient vectors (15). DT-
MRI analysis was performed using in-house software to
generate the diffusion tensor and common summation
indices (e.g., FA).

High b-Value DW-MRI Template Simulation

Given the complete dissimilarity between images
acquired with diffusion-encoding gradients along differ-
ent orientations, and at different b-values, our method
generates ‘‘template’’ images, derived from the low-b-
value data, that have image contrast that matches that of
a given high-b-value image. To do this, it was first neces-
sary to establish how indices computed from CHARMED
related to indices computed from a DT-MRI analysis. Fig-
ure 2, for example, shows that there is a strong linear
relationship between the volume fraction of the re-
stricted component (fr), and FA, which allows one to
predict fr from FA.

Gradient direction and b-value specific templates for
each subject were generated using the CHARMED frame-
work (3,16). CHARMED models the diffusion signal with
two diffusing components: hindered (modeled by a diffu-
sion tensor) and restricted (modeled by diffusion within
impermeable cylinders). The CHARMED framework
includes several parameters: the fr, the diffusivity and
orientation of the restricted component (Dr, f, and y)
and the diffusion tensor of the hindered component (Dh).
In the following work, we inversely used the CHARMED
model to simulate high b-value diffusion template
images using each subject’s DT-MRI data. The various
DT-MRI analysis output parameters were used to
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estimate the CHARMED parameters for one restricted
and one hindered diffusion compartments. The diffusion
tensor was used to provide an estimate of Dh (mean dif-
fusivity of the diffusion tensor), while Dr was taken as 1
mm2/ms. fr was predicted from FA as described above. f
and y were estimated by conversion of the first eigenvec-
tor to spherical coordinates. Eq. [1] below describes the
mathematical expression used for the simulation (16)

Eðq;DÞ ¼ fh � e�4p2 D�ðd3Þð Þðjq?j2l?þjqkj2lkÞ

þ fr � e�4p2jqkj2 D�ðd3Þð ÞDk�ð4p2R4 jq?j2=D?tÞð7=296Þð2�99=112ÞðR2�D?tÞ:

½1�

This procedure yielded coregistered template images
that simulated the contrast seen in diffusion weighted
images acquired at different b-values and gradient direc-
tions in the native image space of each subject.

We Propose to Call this Method UNDISTORT (Using
Nondistorted Images to Simulate a Template of the
Registration Target)

Image Registration

Each acquired high b-value image was registered to the
matching high b-value template (generated from the
DT-MR images and the CHARMED simulation as
described in the previous paragraph) using SPM2 with
a global affine normalized mutual information-based
registration.

Data Analysis

To demonstrate the use of the new UNDISTORT motion/
distortion correction procedure, the corrected high
b-value diffusion images were analyzed using the

FIG. 2. The correlation between FA computed from DT-MRI and
fractional restricted volume computed from CHARMED. Pearson

correlation coefficient of 0.78 indicates that there is a strong linear
relationship between fr and FA, which allows one to predict fr
from FA. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

FIG. 1. Analysis routine flowchart.
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CHARMED framework (3). In summary, the CHARMED
model was fitted using a nonlinear regression routine
(using the Levenberg–Marquardt regression method) in
Matlab (The Mathworks). One hindered and two re-
stricted compartments were used to fit the registered
data and the number of free parameters was 16.

Validation Methods

To establish the reliability of the UNDISTORT frame-
work we used qualitative visual assessment of the regis-
tered DW-MR images and the fractional volume of the
computed CHARMED restricted component. In addition,

FIG. 3. Diffusion weighted data

acquired with diffusion gradients
applied in the same direction at

different b-values. Note the con-
trast change when acquiring
DW-MRIs with b > 3000 s/mm2.

FIG. 4. A representative example for the proposed high b-value registration procedure. a: High b-value template image (b ¼ 3990 s/
mm2, gradient direction:[�0.241, 0.931, 0.132]) compared with (b) the original acquisition at the same gradient direction, (c) the same

image corrected with respect to the nondiffusion image (using SPM2 with a normalized mutual information cost-function), and (d) the
corrected image following UNDISTORT. The outline of the white matter, as detected in the template image, was superimposed on the
original and corrected images. The yellow arrows indicate regions of motion artifact in the acquired DW-MRI. Note the white matter out-

lined in red in the corrected volume with respect to the template image. [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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we used the residuals from the CHARMED fitting (17) to
assess the quality of the fitting as an indirect measure of
the quality of the motion correction. In each voxel, the
error was calculated as the median of the normalized
residuals calculated for all DW-MR images, i.e.,

E ¼ mediank
jDWIkobs � DWIkCHARMED fitj

DWIkobs

 !
½2�

where E is the error and k is the number of analyzed
DW-MR images.

In the case of minimal subject motion, residual analy-
sis was performed for both uncorrected and template-
based corrected data. However, for medium and severe
motion, the uncorrected data was registered with respect
to the nondiffusion image (using SPM2 with a six-param-
eter affine transformation) and using the suggested tem-
plate-based method. Residual analysis was performed to
compare the quality of the fit.

RESULTS AND DISCUSSION

Figure 3 shows a typical high b-value diffusion-weighted
data set acquired along the same gradient direction at
different b-values. It is evident that the image contrast is
not comparable between the different b-values and that
conventional registration method, which relies on match-
ing the image contrast to that of the nondiffusion-
weighted images, will fail.

Template Generation

Figure 4 shows a representative example for the high b-
value registration procedure (UNDISTORT) with a high
b-value template image (b ¼ 3990 s/mm2 gradient direc-
tion: [�0.241, 0.931, 0.132]) (Fig. 4a) compared with the
original acquired DW-MRI (Fig. 4b) at the same gradient
direction, the same image corrected with respect to the
nondiffusion image (using SPM2 with a normalized
mutual information cost-function) (Fig. 4c) and the cor-
rected image following UNDISTORT (Fig. 4d). Close vis-
ual inspection of the edges of the white matter reveals
that the regions outlined in red are well matched to the
template image only when the UNDISTORT algorithm is

FIG. 6. Fractional restricted volume computed from CHARMED
performed on the uncorrected data (left) and data corrected using

UNDISTORT (right) for a subject with minimal head motion. Note
the improved fitting results in the corpus callosum achieved by
the suggested motion correction (a right) with respect to the

uncorrected data (a left). (b) Residual error is mainly evident in
CSF regions, thus, the reduction of the error is minor. [Color figure
can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

FIG. 5. Fifteen different rotation matrixes (6� around x axis and 1–
15� around z axis) were applied to the tensors and 15 correspond-

ing data sets of template images were simulated to examine the
effect of the directional contrast, induced by head motion, on the

template images generated in UNDISTORT. The graph shows the
normalized mutual information for the different templates with
respect to the nonrotated data set (blue dots), a fourth degree poly-

nomial trendline (red line), and representative slices of the simu-
lated template images (images on the top row) versus the rotation
angle around z axis. Note that above 7–8� of rotation around z axis,

the slope of the trendline rapidly decreases and the ability to simu-
late a matching directional contrast is notably reduced. [Color fig-

ure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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used. It is important to note that using only one re-
stricted component for template generation we are mak-
ing a simplification of the signal in crossing fibers
regions (where two or more restricted components may
be required). However, we found that the contrast of the
generated templates adequately matches the DW-MR
image for the purposes of registration.

To examine the effect of head motion on the orienta-
tional contrast and its implication for the robustness of
UNDISTORT, we selected a range of 15 rotation matrices
and applied them to the tensor and to the template
images. The analysis pipeline included the following
steps:

Fifteen different rotations were applied to the data (6�

around the x-axis and 1�–15� around the z-axis). For
each of these rotations (which included appropriate reor-
ientation of the diffusion tensor), new diffusion
weighted imaging (DWI) data sets were generated and

subsequently registered to the nonrotated DWI data set.
DT-MRI analysis was performed on the registered DWI
data sets and used to simulate 15 sets of template
images, as described in the Materials and Methods. Each
of the 15 data sets comprised 36 coregistered template
images in which the contrast was changed according to
the extent of the rotation angle and gaussian noise (var-
iance ¼ 0.01) was added to the noise-free template
images. Finally, normalized mutual information (12) was
computed for each template with respect to the nonro-
tated data set. Figure 5 shows how the normalized mu-
tual information varies as a function of the angle of rota-
tion around z axis. The reduction in normalized mutual
information increases with rotation. When the rotation
angle exceeds 7–8�, the slope of the fourth degree poly-
nomial trendline rapidly decreases, and the ability to
simulate a matching directional contrast is notably
reduced.

FIG. 7. Fractional restricted volume computed from CHARMED performed on data corrected with respect to the nondiffusion image
(left), and the data corrected using UNDISTORT (right) for a subject with moderate head motion. Note the improved fitting results in the
frontal white matter and the external and internal capsule achieved by UNDISTORT (on the right of a,b) with respect to the data cor-

rected with respect to the nondiffusion image (on the left of a,b), respectively. The reduction in the residual error also indicates a better
fit to the CHARMED model following UNDISTORT method (on the right of c,d) versus the data corrected with respect to the nondiffusion

image (on the left of c,d). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Minimum and Moderate Subject Motion

To demonstrate the reliability of our registration in the
cases of minimum subject motion (rotations are less than
0.1� around each axis and translations of size 0.1 mm),
CHARMED analysis was performed for both the uncor-
rected data and the template based registered data. In the
cases of moderate subject motion (rotations are 1.6�

around x axis, 0.5� around z axis and translations of size
4 mm in x axis and 4 mm in z axis), CHARMED analysis
was performed for both the data corrected with respect
to the nondiffusion image (using SPM2 with a six-param-
eter affine transformation and a normalized mutual infor-
mation cost-function) and the template based registered
data. CHARMED analysis indicated that following
UNDISTORT-based motion correction, much better
model fits were obtained (Figs. 6 and 7).

Residual error was used as a measure of the goodness
of the fit for the uncorrected data or the data corrected
with respect to the nondiffusion image versus the data
corrected using UNDISTORT, where high values repre-
sent a poor fit. The residual error dramatically decreased
in areas of gray and white matter when CHARMED was
used to fit the data corrected using UNDISTORT in the
case of moderate subject motion (Fig. 7c,d). Note the rel-
atively large changes in the frontal and temporal lobe,
the corpus callosum (Fig. 7c), and the outline of the
brain (Fig. 7d).

In the subarachnoid CSF, the residual error is generally
high with respect to the white and gray matter, probably
due to the pulsatile flow of the CSF and its increased sus-
ceptibility for noise (14). However, before appropriate
motion correction, these errors are extended to gray matter
regions. As expected, the reduction in the residual error in

the case of minimal subject motion following registration
was less significant (Fig. 6). In the latter case, the residual
error is mainly evident in the CSF, where the error
remains unchanged before and after registration.

Severe Subject Motion

To further demonstrate the use of the UNDISTORT
approach, in the case of severe motion (rotations are 5�

around x axis, 8� around z axis and translations of size 3
mm in x axis and 10 mm in z axis), CHARMED analysis
was performed for both the data registered with respect
to the nondiffusion image (using SPM2 with a six-param-
eter affine transformation and a normalized mutual infor-
mation cost-function) and the template based registered
data. CHARMED analysis indicated that following tem-
plate-based motion correction much better optimization
was achieved (Fig. 8).

GROUP ANALYSIS

To demonstrate the benefits of using UNDISTORT, we
performed CHARMED analysis for both uncorrected and
corrected data using CHARMED data sets of 15 subjects
acquired with the same protocol and derived the re-
stricted volume fraction in each voxel of each subject’s
data set. We then normalized all calculated restricted
volume fraction maps to Montreal Neurological Institute
(MNI) space and computed standard deviation (SD)
maps for both (corrected and uncorrected) normalized
data sets. To ensure that any improvements seen in the
corrected data set were not simply attributable to the
smoothing introduced by the b-spline interpolation, we
applied a similar interpolation to the uncorrected data

FIG. 8. CHARMED analysis for a subject with severe motion. UNDISTORT achieved better optimization (a–c on the right) compared with the
data corrected with respect to a nondiffusion image (using SPM2 with a six-parameter affine transformation) (a–c on the left). Note the improved

results in the external and internal capsule (a left versus right) and the short association fibers at the parietal lobe (c left versus right). [Color fig-
ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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set before CHARMED analysis. Figure 9 shows the SD
maps of normalized fr maps calculated for both uncor-
rected (Fig. 9a) and UNDISTORT-corrected (Fig. 9b) data
sets. The reduction in the SD values following UNDIS-
TORT and the uniform positivity of the difference map
(Fig. 9c) indicates that UNDISTORT provides a signifi-
cant improvement of CHARMED analysis results.

LIMITATIONS

The orientational contrast in any diffusion-weighted
image may change as a result of head motion. Thus, in
the case of extreme head motion between the acquisition
of the data at low b-values and at high b-values, the
simulated high b-value contrast might be inaccurate,
introducing errors in the registration (Fig. 5). However,
as demonstrated in Figure 5, UNDISTORT appears to
correct motion up to 7–8� of rotation. In the implementa-

tion of UNDISTORT presented here, data from a separate
DT-MRI acquisition was used to generate the template
data for registration of the high b-value data. This was
because our standard CHARMED acquisition protocol
only includes a small number of measurements at the
low b-value. Having to acquire two data sets is therefore
a limitation of the current implementation, however, this
could be readily addressed, and the deed to acquire a
separate DT-MRI data set obviated, by ensuring sufficient
angular resolution at low b-value as part of the
CHARMED acquisition. Finally, the low b-value data are
assumed to be successfully realigned, as it is straightfor-
ward to correct it using mutual information based registra-
tion technique and the tensor fitting is assumed to be ro-
bust. However, DT-MRI may suffer from many pitfalls (18)
and if there are errors (misregistration, etc.) in the estimate
of the tensor, they will affect the simulated signal and
impact on the performance of UNDISTORT.

FIG. 9. SD maps of normalized fr maps calculated for both uncorrected (a) and corrected using UNDISTORT (b) datasets of 15 subjects

acquired at the same protocol. The reduction in the SD values following UNDISTORT and the uniform positivity of the difference map (c)
indicates that UNDISTORT provides a significant improvement of CHARMED analysis results.
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CONCLUSION

We have presented a novel framework for correcting
image distortion and patient motion of high b-value dif-
fusion-weighted images. We used the diffusion tensor,
the first eigenvector and the FA maps computed by the
DT-MRI, and the CHARMED model to generate simu-
lated high b-value images. The UNDISTORT procedure
yields a set of coregistered template images, wherein
each image can be used as a reference image for the
registration of a matching high b-value image. In the ab-
sence of a gold standard for the registration of high b-
value DW-MRI, the CHARMED model was used to esti-
mate the validity of the suggested framework. Both quali-
tative and quantitative results demonstrated an improve-
ment in fitting the data to the CHARMED model
following the template-based registration.

This new approach addresses a long-standing problem
and makes correction of motion and distortion in data
collected at high b-values feasible for the first time. This
will open an opportunity to explore and compare the
abilities of the different high b-value approaches in tis-
sue characterization and disease diagnosis.
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