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Effects of diffusion weighting schemes on the reproducibility of
DTI-derived fractional anisotropy, mean diffusivity, and principal
eigenvector measurements at 1.5T
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Diffusion tensor imaging (DTI) is used to study tissue composition and
architecture in vivo. To increase the signal to noise ratio (SNR) of DTI
contrasts, studies typically use more than the minimum of 6 diffusion
weighting (DW) directions or acquire repeated observations of the same
set of DW directions. Simulation-based studies have sought to optimize
DTI acquisitions and suggest that increasing the directional resolution
of a DTI dataset (i.e., the number of distinct directions) is preferable to
repeating observations, in an equal scan time comparison. However, it
is not always clear how to translate these recommendations into practice
when considering physiological noise and scanner stability. Further-
more, the effect of different DW schemes on in vivo DTI findings is not
fully understood. This study characterizes how the makeup of a DW
scheme, in terms of the number of directions, impacts the precision and
accuracy of in vivo fractional anisotropy (FA), mean diffusivity (MD),
and principal eigenvector (PEV) findings. Orientation dependence of
DTI reliability is demonstrated in vivo and a principled theoretical
framework is provided to support and interpret findings with
simulation results. As long as sampling orientations are well balanced,
differences in DTI contrasts due to different DW schemes are shown to
be small relative to intra-session variability. These differences are
accentuated at low SNR, while minimized at high SNR. This result
suggests that typical clinical studies, which use similar protocols but
different well-balanced DW schemes, are readily comparable within the
experimental precision.
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Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance (MR)
imaging technique that is sensitive to the random thermal motions
of water and can provide contrasts which give insight about tissue
architecture. A diffusion tensor is a simple, yet powerful,
mathematical description of the underlying, three-dimensional
diffusion process that can be estimated from a series of diffusion-
weighted (DW) MR images (Basser et al., 1994). Typically, a DW
image is created by applying a pair of magnetic field gradients
(so-called dephasing and rephasing gradients) along a distinct
direction in 3D space. The resulting image, therefore, shows
signal attenuation in the direction of the applied gradient, and the
degree of signal attenuation is proportional to the water
diffusivity. A diffusion tensor may be estimated from as few as
6 DW images acquired along non-collinear directions and 1
minimally weighted (b0) image. However, to increase the signal-
to-noise ratio (SNR), more than 6 DW images are commonly
acquired along 6 or more non-collinear directions. In the latter
case there are two options: either to add additional DW directions
or repeat existing DW directions. For example, if time permits the
acquisition of 12 DW images in total, one can increase the
directional resolution (DW images in 12 distinct directions) or
increase the number of scan repetitions (2 repetitions of DW
images in 6 distinct directions); both of which take the same
amount of time.

A source of confusion may be how to properly interpret the
literature when selecting a DW scheme. Substantial theoretical and
experimental work has gone into developing optimized DW
schemes (Alexander and Barker, 2005; Conturo et al., 1996; Hasan
et al., 2001; Jones, 2004; Jones et al., 1999; Skare et al., 2000) that
permit accurate and precise calculation of a diffusion tensor and
diffusion tensor-derived contrasts (such as fractional anisotropy,
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mean diffusivity, etc.) which result from the tensor formalism
(Batchelor et al., 2003; Hasan et al., 2004; Jones, 2003; Jones and
Basser, 2004). Several commonly used DW schemes have emerged
through research addressing different constraints and imaging
objectives. For example, 6 DW direction schemes can be cons-
tructed with tetrahedral distributions (Conturo et al., 1996) that
provide simple geometric sampling or dual gradient methods
(Pierpaoli et al., 1996) that maximize gradient power, thereby
achieving a shorter echo time (TE). When additional DW directions
are desired, potential energy (PE) minimization methods (Jones et
al., 1999) have been shown to ensure regular sampling and
minimize the rotational dependence of noise propagation (Batchelor
et al., 2003; Jones, 2004). It is important to note that when the
number of directions in a DW scheme corresponds to a member of
an icosahedral group (e.g., 6, 10, 15, 31), the minimized PE solution
can be expressed analytically as the vertices of the corresponding
polyhedron (Batchelor et al., 2003; Hasan et al., 2004). The
diversity of available DW schemes is also increased by schemes
with more than 6 directions that maximize gradient power at the
expense of less evenly spaced sampling (Jones, 2004; Muthupallai
et al., 1999).

Moreover, practical constraints, such as available scan time,
propensity for data corruption due to patient motion, gradient hard-
ware performance, and manufacturer software limitations, often
dominate the decision regarding which set of DW directions is
optimal for use in a DTI experiment. However, the use of different
DW schemes may lead to different computed tensors, and ulti-
mately inconsistencies in the derived contrasts. The effects of
relevant DW schemes on the accuracy and precision of tensor
estimations and the derived contrasts have been investigated by
simulation (Jones, 2004; Skare et al., 2000) and with in vivo data
(Jones, 2003; Ni et al., 2006; Skare et al., 2000). There is strong
simulation evidence that increasing the directional resolution is
preferable to increased scan repetitions in an equal scan time
comparison with a decreasing effect size as the number of DW
directions increases (Hasan et al., 2001; Jones, 2003, 2004; Jones
et al., 1999; Papadakis et al., 1999; Skare et al., 2000).

In this study, we investigate how the number of directions, in a
well-balanced DW scheme, affects DTI-derived contrasts through
direct in vivo analyses of experimental data. This methodology
exposes the potential impacts of real world factors including subject
motion and imaging artifacts/distortion. In addition to the in vivo
experiments, simulations were performed to understand the
characteristics of the experimental data (e.g., experimental data
used as a basis for simulation with modeled noise). With this
approach, we investigate the explanatory power of the single tensor
model and interpret the experimental results in the context of the
simulation literature.

Ultimately, this study addresses the differential hypothesis that
either (1) the theoretical estimation benefits of using 30 DW
directions as opposed to five repeats of 6 DW directions are realized
in practice, or (2) other intra-session and inter-session factors, such
as physiological noise, registration accuracy, distortion artifacts, or
gradient performance, dominate the accuracy of DWexperiments so
that the choice of the direction scheme is non-significant in practice.
Stated simply, this study addresses a fundamental question: given a
certain amount of time for a DTI study, which DW scheme should
be used for optimally precise and accurate DTI-derived contrasts,
and why? This is an important question to consider when designing
experiments and comparing data from different institutions but
remains largely unanswered. Furthermore, a principled theoretical
framework is provided to support and interpret experimental
findings relative to simulation results.

The specific objective of the present study was to characterize
how the choice of DW scheme impacts the precision and accuracy
of fractional anisotropy (FA), mean diffusivity (MD), and the
principal eigenvector (PEV) based on in vivo experimental data,
with simulations to clarify and interpret these results. We present
methods to partition a general, high directional resolution DTI
dataset into subsets with a lower directional resolution. Without
these partition techniques, a substantially larger dataset would be
required to investigate the differences due to different DW schemes.
This study is a part of the Biomedical Informatics Research Net-
work (BIRN) studies. Acquired and processed DTI data as well as
the acquisition protocol for this study are freely available through
the BIRN website (http://www.nbirn.net/Resources/Downloads/)
and can be used as a data resource and reference for 1.5T scanners.

Methods

Data acquisition

A healthy 24-year-old male volunteer participated in this study.
Local institutional review board approval and written informed
consent were obtained prior to examination. All data were acquired
using a 1.5T MR scanner (Intera, Philips Medical Systems, Best,
The Netherlands) with body coil excitation and a six-channel
phased array SENSE head coil for reception. Three scanning
sessions were performed over 2 days with the subject repositioned
between each session. In each scanning session, 15 DTI datasets
were acquired, yielding a total of 45 DTI scans. Each DTI dataset
was acquired with the following imaging protocol. A multi-slice,
single-shot EPI (SENSE factor=2.0), spin echo sequence (TR/TE=
3632/100 ms) was used to obtain 25 transverse slices parallel to the
line connecting the anterior and posterior commissures with no slice
gap and 2.5 mm nominal isotropic resolution (FOV= 240×240,
data matrix=96×96, zero-filled and reconstructed to 256×256).
Diffusion weighting was applied along 30 distinct directions
(Jones et al., 1999; Skare et al., 2000) with a gradient strength of
G=19.5 mT/m and a b-factor of 1000 s/mm2. Five minimally
weighted images (b0s) were acquired and averaged on the scanner
as part of each DTI dataset. The total scan time to acquire one
DTI dataset (30 DW images and 5 b0 images) was 2 min 18 s. The
total time, including image reconstruction, to acquire 15 DTI
datasets and one anatomical MRI in a scan session was appro-
ximately 45 min.

Motion correction and SNR calculations

DTI datasets were processed offline using Matlab (Mathworks,
Natick, MA) routines running on a Sun Fire V880 server (Sun
Microsystems, Mountain View, CA). All data were coregistered
with a purpose-constructed method (Landman et al., 2006) utilizing
FLIRT (FMRIBTs Linear Image Registration Tool, Oxford, UK)
(Jenkinson et al., 2002) to remove rigid body motion with six
degrees of freedom registration. The gradient tables, which specify
the direction of the magnetic field gradient corresponding to each
particular DWI, were corrected to compensate for the rotational
component of the coregistration procedure. Diffusion tensors were
calculated using a multivariate log-linear fitting method in which
each DW image and its corresponding vector from the gradient table
entered the diffusion tensor calculation as unique entries—i.e., no
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averaging of DW images was performed. These analysis methods
were encapsulated and publicly released in CATNAP (Coregistra-
tion, Adjustment and Tensor-solving, a Nicely Automated Program,
http://iacl.ece.jhu.edu/~bennett/catnap/, Johns Hopkins University
School of Medicine, Baltimore, Maryland, USA).

The log-linear fit was performed with no restrictions on the sign
of the eigenvalues. To prevent taking the log of zero, a voxel with
an intensity of zero in a DW image was set to half of the smallest
non-zero voxel intensity recorded. The eigenvector associated with
the largest eigenvalue (λ1), i.e., the principal eigenvector (PEV), is
taken to represent the predominant fiber orientation in each voxel.
In the color-coded PEV maps, the dominant fiber orientation in a
voxel was represented by red, green, and blue colors which were
assigned to right–left, anterior–posterior, and superior–inferior
orientations, respectively (Jones et al., 1997; Pierpaoli, 1997).

There are several difficulties in calculating an experimental
SNR value that can be precisely compared with the values
resulting from simulation studies. Whereas the noise in simula-
tion studies is a modeled parameter, the SNR in in vivo imaging
is spatially varying (due to coil sensitivity) and is tissue
dependent (via the interaction of imaging sequence parameters
and local tissue characteristics, e.g., T1, T2, PD). Furthermore,
MR images can be subject to chemical shift artifacts as well as
artifacts due to field inhomogeneity, eddy currents, and EPI-based
geometric distortions.

To compare results with the literature and ensure that subsequent
simulation studies correspond to approximately the same SNR
range as the experimental data, we used a manual region of interest
calculation. For clarity, we report SNR in terms of power decibels

20 log10
signal amplitude

rnoise

� �
and contrast ratio (signal amplitude: σnoise).

The SNR in the splenium of the corpus callosum was approximately
25 dB (17.8:1) in the averaged b0 image, which would indicate an
approximate SNR of 18 dB (7.9:1) in a single b0 image.
Partitioning and grouping of diffusion-weighted data

The DW data in this study were acquired with a PE optimized 30
direction scheme (Jones et al., 1999; Skare et al., 2000), hereafter
Fig. 1. Minimum potential energy (PE) partitions of the Jones30 DW scheme. The
which is proportional to the area of the spherical Voronoi tessellations of the DW d
(left) because the gradient tables are corrected for subject motion. The right panel sh
consists of three sub-clusters which represent realized DW directions from each ses
the distribution of the symbols shows the intra-session effects. Large ovals indicat
referred to as the Jones30. To investigate the effects of different DW
schemes, the Jones30 scheme was partitioned into optimal PE-
minimized subsets of 6, 10, and 15 DW directions with a Monte
Carlo pair-wise relaxation method (Landman et al., 2006). These
subsets are denoted as PE6, PE10, and PE15, respectively. The
objective in this optimization step was to identify the closest
approximation of a minimum PE scheme possible given the
limitation of using data acquired with the Jones30 DW scheme. The
Appendix Table A1 tabulates which directions from the Jones30
scheme were assigned to each of the optimized PE schemes.

The selection of optimal subsets was accomplished by Monte
Carlo restarting of a local gradient descent algorithm. The
algorithm was initialized by selecting N directions at random from
the Jones30 scheme. This subset of size N was then optimized
through an exhaustive search that involved a member–non-member
exchange to minimize the previously described PE function (Jones
et al., 1999). Fig. 1A illustrates the DW directions obtained by
optimization for the PE6, PE10, and PE15 schemes as compared to
the standard Jones30. The PE of the partitioned DW schemes
(99.0, 303.5, 726.7) was at most 1% higher than the unconstrained
PE optima for the equivalent number of directions (98.3, 301.8,
719.5).

It is important to note the differences between the specified DW
direction and the realized diffusion weighting direction due to
patient motion. We use the term “specified” to refer to the set of DW
directions that are given to the MR scanner at the time of
acquisition. These directions are relative to either the slice layout
(e.g., measurement, phase, and slice orientations) which was the
case for this study or the fixed magnetic coordinate frame (e.g., the
bore), depending on the scanner settings. When a heterogeneous
sample, e.g., a human brain, is placed in the scanner, the diffusion
weighting is also relative to the position and orientation of the
anatomy. It is possible that volunteers will move or rotate during a
sequence, and therefore the relative orientation between the scanner
coordinate system and the anatomy changes. Image coregistration
corrects for this in that it forces voxels in one anatomical location of
one scan to correspond to the same anatomical location in a
subsequent scan. However, motion correction also changes the
relationship between the anatomical and scanner coordinate
optimal PE partitions (left) are evenly distributed as indicated by the shading
irections. The realized directions are distinct (right) from the specified ones
ows 30 clusters, where each cluster represents a specified DW direction and
sion. The separation of the sub-clusters shows the inter-session effects, while
e the subset of the Jones30 that was used to construct the PE6 partition.
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systems, and thus the diffusion weighting. When rotating the
anatomy to establish spatial correspondence, the DW direction in
the gradient table must also be rotated so that the vector that des-
cribes the diffusion weighting is correctly interpreted relative to the
anatomy. We refer to the corrected DW directions, which are
slightly different than the “specified” ones, as the “realized” DW
directions. In an ongoing retrospective analysis of patient motion of
160 DTI scans from 52 subjects (30 ataxic patients, 22 controls), we
observed an average of 1.9±0.87 mm of translation and 0.53±0.38°
of rotation over a 3 min 57s time period (results presented in poster
format Landman et al., 2006). Even with a healthy, well-behaved
subject in this study, the specified and realized DW directions were
different by 0.20±0.07° within each session and a much larger
difference occurred between sessions due to subject positioning
(Fig. 1B).

To provide a benchmark for the differences between “poor”
and “good” DW schemes, a direction-wise closest approximation
to the tetrahedral 6 scheme was generated from the 30 direction
PE scheme, denoted Tetra6. The Appendix Table A2 lists the
DW directions from the Jones30 scheme that were assigned to
the Tetra6 scheme. This scheme has been shown to have a high
condition number (a measure of noise propagation in the
estimation process), produce DTI results that exhibit prominent
dependence on orientation, and lead to low SNR results (Skare
et al., 2000).

To test if the partitioned subsets were a good approximation of
the unconstrained optimal PE schemes with an equivalent number
of directions, Monte Carlo simulation experiments were performed
on diffusion tensor data derived from in vivo human brain
observations. To minimize arbitrary effects of orientation, the
unconstrained optimal PE schemes were first reoriented so that the
directions were most similar (under mean squared error) to those of
the partitioned subsets. One thousand tensors with FA>0.25 were
randomly selected from the DTI results of an in vivo human brain
experiment. For each tensor, 100 simulated observations were
created by applying the tensor model of diffusion to the set of DW
directions for each DW scheme (Stejskal and Tanner, 1965).
Gaussian noise was added in quadrature (e.g., in the frequency
domain) to the DWIs and b0 so that the resulting b0 images had a
SNR of 20 dB (10:1), which is approximately equivalent to the
SNR observed in the experimental data. Diffusion tensors were then
estimated from the simulated data for the partitioned subsets and
unconstrained optimized schemes, respectively. Comparison of the
mean FA and PEV using each DW scheme revealed mean
differences between the unconstrained optimal PE schemes and
the optimal PE partition schemes of (1) less than 0.005 in FA and
(2) less than 0.5° in PEV orientation, which are both less than the
differences observed in repeated acquisitions using a 30 direction
DW scheme (Farrell et al., 2006). Thus, the optimal subsets (PE6,
PE10, PE15) are deemed appropriate surrogates for the uncon-
strained optimal schemes.

To ensure a scan time equivalent (STE) comparison (e.g.,
between DW schemes that could be achieved in the same amount
of scan time), the acquired DTI data were grouped to form
“composite acquisitions.” The composite acquisitions are group-
ings of DW volumes from various scans within a session, e.g., the
PE6 directions from the first 5 sets of scans in a session. The basis
for comparison is 1 or 3 STE units which represent a total of
30 DW images+5 b0s or 90 DW images+15 b0s respectively, no
matter whether the DW images were unique or repeated
observations. For example, the optimal 6 DW directions can be
selected from scans 1 through 5, 6 through 10, and 11 through 15
respectively to yield three composite acquisitions with 6 DW
directions at 1 STE. In each instance, 5 observations of each DW
image are utilized. However, in order to construct a “composite
acquisition” at 3 STE, the optimal 6 DW directions from all 15
scans must be combined. Similarly, this method produces 5
groupings of 10 DW directions at 1 STE and 1 grouping of 10 DW
directions at 3 STE; 7 groupings of 15 DW directions at 1 STE and
2 groupings of 15 DW directions at 3 STE; and 15 groupings of
30 DW directions at 1 STE and 5 groupings of 30 DW directions at
3 STE.

Within session mean FA, MD, and PEV findings are defined as
those obtained when all acquired in vivo data (15 acquisitions of
30 DW directions) from a session are utilized in a single diffusion
tensor calculation. We note that directly combining raw DTI data
from different scan sessions can be problematic due to changes in
scanner calibration. Therefore, to further improve SNR and
mitigate inter-session effects, the mean DTI contrasts from each
session were averaged over the three combined analyses to produce
“gold standard” contrasts.

Experiments that use acquired MR data only

Region of interests analysis
ROIs were manually delineated to maximize the inclusion of

voxels within a structure, while minimizing visual partial volume
contamination from adjacent structures. For the analysis of FA and
MD in GM structures, ROIs were chosen in the putamen (put) and
globus pallidus (gp). For the analysis of WM structures, ROIs were
chosen in the centrum semiovale (cs), internal capsule (ic) and
splenium of the corpus callosum (scc). For the analysis of the PEV,
an additional ROI was delineated in frontal WM (fw). These
correspond to the same ROIs as previously reported (Farrell et al.,
2006).

The differences in the mean and variability of FA, MD, and PEV
observed with the PE6, PE10, and PE15 schemes relative to the
Jones30 scheme were assessed with two-sided, nonparametric
permutation tests (Good, 2000). The permutation tests were
performed on the significance of the group labels (e.g., PE6 versus
Jones30) relative to the statistics (i.e., FA, MD, PEV) grouped by
region of interest. The statistic used to compare measures was the
total number of observations from the partitioned DW scheme that
were greater than/less than (e.g., two sided) the corresponding ROI
mean from the Jones30 scheme. The probability of having a
particular value for the statistic under the null hypothesis (difference
in FA/MD/PEV) of at least the observed value was determined by
permutation testing by (1) assuming the null (i.e., the groups were
not meaningful) and then, (2) randomly permuting the group/data
association. This was repeated 10,000 times to compute an
empirical distribution under the null for each difference statistics.
p-Values were assigned by referencing the observed statistical value
into the empirical cumulative distribution function to determine the
probability of the occurrence of the observed value if the null
hypothesis were true.

Gold standard contrasts were defined as the average of the three
contrasts estimated by utilizing all data from a single session (e.g.,
from 15 repetitions of the Jones30 scheme) (Farrell et al., 2006).
The accuracy and precision of FA and MD within a ROI for a
particular DW scheme were calculated as the mean bias and
variance, respectively, between the observations and the gold
standard contrasts. The accuracy of the PEV orientation was
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investigated by analyzing the mean angular difference (MAD)
between the observations of one scheme and the properly averaged
PEVs from the gold standard. Details of the MAD metric and its
relationship to bias and variability measurement are presented in
Appendix A. Differences were assessed with datasets correspond-
ing to 1 and 3 STE.

Accuracy and precision of DTI contrasts versus fiber orientation
To assess potential variations in the accuracy and precision of

DTI contrasts as a function of fiber orientation, we considered all
voxels in the brain with gold standard FA>0.25 in the central 17 of
25 slices (154,001 voxels in each brain volume). The selected
voxels were then binned by their gold standard PEV orientation
using a 5°×5° spherical coordinate grid. The following measures
were then computed over each of the bins:

(1) Mean FA (based on all observations using PEN at P STEs)−
mean FA (based on all observations using Jones30 at P STEs).
This was done for N=6, 10, and 15, and P=1 and 3. The
calculation was repeated for MD.

(2) Standard deviation of FA (based on all observations using
PEN at P STEs)− standard deviation of FA (based on all
observations using Jones30 at P STEs). This was done for
N=6, 10, and 15, and P=1 and 3. The calculation was
repeated for MD.

The mean value in each bin was calculated. For the scalar
contrasts, the differences in accuracy (ΔFA and ΔMD) and in
precision (Δσ(FA) and Δσ(MA)) relative to the values obtained
when using the Jones30 scheme could be assessed as a function of
fiber orientation. For the PEV, accuracy was assessed by
considering the mean angle between observed PEVs and gold
standard PEV (angular bias), while precision was assessed by
considering the mean angle between the observations and the
mean PEV of the same diffusion weighting scheme (angular
variability). Appendix A details the methods used to analyze PEV
errors.
Experiments that used acquired MR data and modeled noise

The effects of SNR on DTI contrasts have been demonstrated
with numerical simulation and by combining several acquired in
vivo datasets. These mutually exclusive techniques are difficult to
reconcile, as in vivo datasets ensure a myriad of effects. In this
study, a series of three simulations were conducted that added
modeled noise to acquired MR data to explore how well the tensor
model explained and replicated the findings obtained when
acquired MR data are used and a data grouping method is
implemented to increase SNR.

The following Monte Carlo framework was used to simulate
imaging results on a set of baseline tensors for all simulations: (1) a
theoretical noise-free intensity was computed according to the
tensor model for each diffusion- and minimally weighted image
specified by the simulated acquisition scheme (Stejskal and Tanner,
1965); (2) Gaussian noise was added to the acquired MR data in
quadrature so that the composite, simulated minimally weighted
acquisitions had a specific SNR; and (3) simulated observed
tensors were estimated with a log-linear model. The baseline
tensors were processed sequentially with a fixed number of Monte
Carlo iterations per tensor.
Simulation 1: accuracy and precision of DTI contrasts versus fiber
orientation

The first experiment investigates how well a tensor model
could account for the observed orientation differences in the
accuracy and precision of DTI contrasts due to the directional
resolution of the DW scheme. The 154,001 diffusion tensors
with FA>0.25 from the gold standard of the first scan session were
used as a simulated ground truth using the simulation framework
with the PE6 and Jones30 schemes. One hundred Monte Carlo
iterations were performed for all tensors. Precision and accuracy
were assessed with the same binning analyses that were used with
the acquired in vivo data. Note that no tensor reorientation was
performed.

Simulation 2: angular variability of estimation fidelity with tensor
anisotropy

The second experiment explored the interaction between SNR,
directional resolution and estimation accuracy to validate these
findings against previously reported results and to use directly
comparable visualization methods. Three canonical tensors were
chosen from the experimental data to represent tissues with low FA
(0.30), moderate FA (0.49), and high FA (0.74). The tensors were
sequentially reoriented in 3D space so that the PEV was directed
toward the center of each 5°×5° bin derived from the binning
process. In this study, orientations of the secondary and tertiary
vectors are arbitrary after PEV rotation while the eigenvalues re-
main unchanged. In other words, the tensors were not cylindrically
symmetric. When the tensors were reoriented by a series of
rotations (first rotate the PEV to the y-axis and then rotate around
the x-axis and z-axis to the desired orientation), the relationship
between the remaining two eigenvectors was determined by the
definition of the rotation matrix, which was fixed, but arbitrary and
non-unique. A different rotation of the tensor around the PEV
would yield the same PEVorientation but different second and third
eigenvector orientations. This resulted in a total of 3888 (3
tensors×36 φ increments×72 θ increments×0.5 orientation
symmetry) unique tensors. For both the PE6 and Jones30 schemes,
100 Monte Carlo simulations were performed for all tensors.
Precision and accuracy were assessed with the same binning
analyses as were used with the acquired in vivo data.

Simulation 3: impact of SNR on estimation fidelity
The third experiment explored the orientation dependence of

tensor estimation at varying SNR. The intent of this simulation was
to provide intuition as to how the measurement accuracy and
precision relate to DW scheme and underlying orientation. Two
orientations were chosen, one where the magnitude of FA bias was
lower, in simulation, for the PE6 relative to Jones30 (θ=−125°,
φ=8°) and one where the magnitude of FA bias was higher (θ=
−30°, φ=10°). For these orientations, the three canonical tensors
were simulated with 100 Monte Carlo iterations for simulation SNR
(on the minimally weighted image) at 50 uniformly spaced SNRs
between 10 dB (3.2:1) and 40 dB (100:1). This resulted in 300
simulation runs (3 tensors×2 orientations×50 SNR levels).

Results

Experiments that used acquired MR data only

PEV colormaps computed from PE6, PE10, PE15, and Jones30
schemes at 1 STE are shown in Fig. 2, at the level of the lateral



Fig. 2. Representative colormaps of the PEVorientation obtained with each
of the PE partitioned DW schemes at 1 STE (left). For comparison, a
colormap and a FA map computed with all acquired data from one session
(15 STEs) are shown at right.

Fig. 3. Observed FAwithin ROIs by DW scheme. For each DW scheme, the
mean FA within each ROI (indicated at right, scc=splenium of the corpus
callosum, ic= internal capsule, cs=centrum semiovale, gp=globus pallidus,
and put=putamen) and each session are shown. Horizontal lines indicate the
mean over three sessions of the Jones30 observations for the corresponding
STE and ROI.
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ventricles. Though these PEV colormaps appear to be quite similar
and of comparable quality, visual inspection alone cannot discern
the substantial differences due to the different DW schemes. For
quantitative analysis to detect the differences, ROI and voxel-based
analyses were performed.
Fig. 4. Observed MD within ROIs by DW scheme. For each diffusion
weighting scheme, MD within two ROIs (indicated at right, scc=splenium
of the corpus callosum and put=putamen) and each session are shown.
Horizontal lines indicate the mean over three sessions of the Jones30
observations for the corresponding STE and ROI.
Region of interest (ROI) analysis: accuracy and precision of DTI
contrasts

The Tetra6 scheme performed significantly worse than the three
PE optimized DW schemes (PE6, PE10, and PE15) when compared
to the Jones30. The Tetra6 scheme exhibited large upward biases in
FA (Fig. 3) (p<0.01), increased variability in MD (apparent in Fig.
4, but not explicitly shown) (p<0.01), and increased MAD (Fig. 5)
(p<0.01 for 3 STE only) relative to the Jones30 scheme. No sig-
nificant differences were seen for mean MD. The poor performance
of the Tetra6 is expected as the Tetra6 scheme has a considerably
higher condition number, and hence a greater degree of noise pro-
pagation than the PE optimized DW schemes (PE6, PE10, PE15, and
Jones30) (Skare et al., 2000).

The PE optimized schemes (PE6, PE10, PE15) showed small, yet
significantly increased FA biases relative to the Jones30 scheme.
Recall that statistical tests are based on combining information
across ROIs, so the p-values indicate the significance of difference
for the set of ROIs. For the case of the PE6 scheme, the upward bias
with respect to the Jones30 was significant for both 1 STE (p<0.02)
and 3 STEs (p<0.01). There were also differences (p<0.05) noted
for PE15 versus Jones30. No significant differences were observed
in FA variability. The average magnitude of the differences was
only 0.0038 between PE6 and Jones30 at 1 STE and not clearly
appreciable from Fig. 3.

The directional resolution of the PE optimized schemes showed
no effect on observed MD with 1 STE (Fig. 4); however, the dif-
ferences became significant at 3 STE for PE6 (p<0.01), PE10

(p<0.01), and PE15 (p<0.05) versus 30 DW directions. The varia-
bility of MD was significantly different for PE15 versus Jones30
(p<0.01) at 3 STE (not shown). The average magnitude of dif-
ferences is only 0.010×10−3 mm2/s (approximately 1%) between
PE6 and Jones30 at 1 STE.

MAD and MAD variability were significantly different for PE6

versus Jones30 at both 1 STE and 3 STE (p<0.01) (Fig. 5). For
PE10 versus Jones30, MAD was different at 1 STE (p<0.01), while



Fig. 5. Observed MAD within ROIs by DW scheme. For each diffusion
weighting scheme, MADwithin two ROIs (indicated at right, scc=splenium
of the corpus callosum and put=putamen) and each session are shown.
Horizontal lines indicate the mean over three sessions of the Jones30
observations for the corresponding STE and ROI.
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the variability of MAD was different for 1 STE (p<0.01) and 3 STE
(p<0.03). The average magnitude of the differences is 0.1° between
PE6 and Jones30.
Voxel-wise analysis: accuracy and precision of DTI contrasts
versus fiber orientation

The ROI-based analysis described above reflects a conventional
approach for quantification of accuracy and precision. However,
the ability of this approach to detect small performance differences
between DW schemes is limited because each ROI contains many
different fiber orientations and the accuracy and precision of any
DW scheme depend on the spatial sampling of the DW scheme
relative to the orientation of the anisotropy within the sample.
When a DW scheme has a low number of directions, DTI contrasts
may show a dependence on the fiber orientation. This directional
Fig. 6. Directional sensitivity is evident for FA variability. The precision of FA (st
(spherical coordinates) for all the voxels in the brain with FA>0.25. The precisio
greater dependence on orientation than the Jones30 scheme (panel B). The differenc
correspond well to the sparse sampling of the PE6 scheme. Black markers indicate
sensitivity is evident for FA measurements as shown in Fig. 6, in
which the precision of FA (standard deviation) is plotted as a
function of the underlying PEV orientation (spherical coordinates)
for all the voxels in the brain with FA>0.25. The precision of FA
measurements with the PE6 scheme showed a noticeable
dependence on orientation, while the precision of FA measure-
ments with the Jones30 scheme showed less dependence.
Importantly, the difference between the results with the PE6

scheme and the Jones30 scheme highlight pockets of poor FA
precision that correspond well to the sparse sampling of the PE6

scheme.
To compare the directional sensitivity of DW schemes, the

precision and accuracy of FA, MD and PEV measurements
obtained with a sparse DW sampling scheme (PE6) were
compared to those obtained with the high directional resolution
Jones30 scheme (Fig. 7) (i.e., result from PE6 scheme minus
result from Jones30 scheme). The results when using the PE6

scheme were as follows. FA was consistently more biased for PE6

relative to Jones30. FA was found to be relatively less biased, yet
more variable for tensors oriented collinear with the sampling
directions (Fig. 7, row 1). The accuracy and precision of MD did
not show a consistent dependence on the PEV orientation or DW
sampling direction (Fig. 7, row 2). Accuracy of PEV measure-
ments showed some dependence on orientation, but the precise
relationship was not clear. Precision of PEV measurements
generally improved for tensors oriented collinear to the sampling
directions (Fig. 7, row 3).

In absolute terms, the differences in accuracy and precision due
to sparse DW sampling are small: mostly within ±0.02 [FA]. Little
orientation variability was seen in either Δbias or Δσ of MD. In
absolute terms, the angular differences (AB and AV) were within 2°.

To concisely describe the effects of changing the number of DW
directions and SNR (the number of STEs), we report the 95% range
of differences of each partitioned DW scheme relative to the
Jones30 scheme by orientation for each of the metrics previously
described (Fig. 8). In these plots, negative values indicate that the
scheme has smaller values than the Jones30 scheme, while the
range shown represents the 2.5% and 97.5% quantiles of the
corresponding spherical orientation plot (e.g., Fig. 7) histogram. FA
exhibited greater bias when using a lower resolution DW scheme.
The variability of FA measurements was greater for the Tetra6
andard deviation) is plotted as a function of the underlying PEVorientation
n of FA measurements with the PE6 scheme (panel A) showed a noticeably
es (panel C) between the schemes highlight pockets of poor FA precision that
the specified DW directions.



Fig. 7. Experimental directional sensitivity and bias for the PE6 relative to Jones30 scheme. Differences in the bias magnitude (Δ∣bias|) and standard deviations
(Δσ) are plotted for FA (first row) and MD (second row). For the PEV, angular bias (AB) and variability (AV) are reported (third row). The 6 directions of the
PE6 scheme are indicated by circled markers. To aid in interpretation, the small spheres to the left of the polar plots display the same data as the corresponding
polar plot.

1130 B.A. Landman et al. / NeuroImage 36 (2007) 1123–1138
scheme but roughly equivalent for the well-balanced schemes. MD
bias was consistently larger and showed greater range for lower
directional resolution schemes, while MD variability demonstrated
increased range with little change in median. PEV was consistently
more biased for low directional resolution schemes. Angular
variability was greater for the Tetra6 scheme and showed increased
range of variability for the low directional resolution well-balanced
schemes. The observed trends in variability were qualitatively
consistent at 1 STE and 3 STE, indicating that increased SNR does
not dramatically mitigate the directional sensitivity effects due to
sparse DW scheme sampling. However, there appeared to be
increased bias of MD and possibly of FA and AB.

Experiments that used acquired MR data and modeled noise

Simulation 1: accuracy and precision of DTI contrasts versus fiber
orientation

The differences between the PE6 and Jones30 schemes found in
simulation compare favorably to the spatial distribution and
magnitude of the effects found when using acquired MR data
exclusively. Fig. 7 (acquired MR data only) can be compared to Fig.
9 (acquired MR data with modeled noise). For PE6 relative to
Jones30, the magnitude of the FA bias was generally decreased in
the neighborhood of the PE6 DW directions, while the FA
variability simultaneously increased (Fig. 9, row 1). MD showed
little dependence on orientation for bias or precision (Fig. 9, row 2).
The results for PEV precision (AV) showed a clear trend for
improved precision in the vicinity of the DW directions, while the
results for PEV bias (AB) are less conclusive, though a trend for
increased bias near the DW directions is observed (Fig. 9, row 3).
The acquired data demonstrated greater FA bias and AB than the
simulations. Table 1 summarizes the relationship between the
qualitative observations. The magnitude of the effects observed
with in vivo data exclusively was up to twice as large as those
observed in simulation. This could be due, in part, to SNR
differences between the acquired in vivo data (with a spatially
varying noise profile and a mean of approximately 18 dB (7.9:1))
and simulated data (with spatially constant noise profile of 20 dB
(10:1)).

Simulation 2: effect of anisotropy on tensor estimation fidelity
Fig. 10 shows the simulated differences due to using the PE6

scheme as opposed to using the Jones30 scheme (i.e., result from
PE6 scheme minus result from Jones30 scheme). The following
trends were observed for each DTI contrast (FA, MD, and PEV) at
the three anisotropy levels.

In general, FA bias and precision were dependent on the orien-
tation and anisotropy of the diffusion tensor. High anisotropy
tensors exhibited greater changes in FA bias and precision (Fig. 10,
rows 2 and 3 respectively) than lower anisotropy tensors. In parti-
cular, for tensors aligned with the DW directions, the magnitude of
the FA bias tended to decrease and FAvariability increase while for
other orientations (aligned between DW directions), the magnitude
of the FA bias increased and FA variability decreased.

The results for MD, on the other hand, did not show a strong
relationship with the tensor alignment. The PE6 results were consis-
tently more biased for all orientations. The difference in the mag-
nitude of MD bias between PE6 and Jones30 protocol showed a
slight increase for high FA tensors aligned with the DW directions
(Fig. 10, row 4).

The precision and accuracy of the PEV orientation were
dependent on the orientation and anisotropy of the tensor. In
particular, tensors oriented collinear with the PE6 directions
exhibited increased bias with PE6 relative to Jones30 (Fig. 10,



Fig. 8. PEVorientation dependence for derived contrasts. The minimum and maximum of each rectangle correspond to the 2.5% and 97.5% quantile differences
(95% range of differences) of orientation dependence maps (e.g., as shown in Fig. 7) between the indicated DW scheme and Jones30 scheme. Central horizontal
lines represent the median difference.
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row 6). The variability of PEV orientation decreased when the
tensors were aligned with the sampling direction (Fig. 10, row 7).
These effects were mitigated for moderate anisotropy tensors and
were not visible with the low anisotropy tensors.

Simulation 3: impact of SNR on tensor estimation fidelity
SNR simulations indicate that estimation of FA is biased by

the fiber orientation and directional resolution of the DW scheme.
At very low SNR, there is up to a 0.12 [FA] bias as compared to
estimates of FA for the high FA tensor; however, the magnitude
of the bias decreases to less than 0.013 [FA] at 20 dB (Fig. 11,
panel A). Both the percent and magnitude of the bias were
smaller for more isotropic tensors. Variability of FA estimation
was similar for the three tensors; the results for the high FA
Tensor are shown. As expected, there was a consistent decrease in
variability with increased SNR (Fig. 11, panel B). For all SNR
levels, the variability was greatest when the tensor was in the
lower FA bias orientation and imaged with 6 DW directions and
least for the higher FA bias orientation when imaged with 6 DW
directions. The variability of FA measurements with 30 DW
directions consistently fell between these extremes with little
differences between the orientations. Note that the difference in
variability for orientations with the 6 DW directions is still 0.025
[FA] at 25 dB.

The simulated estimation fidelity of MD was insensitive to
tensor orientation as can be appreciated in Fig. 11, panel C. The
Jones30 observations were accurate above 15 dB for the high FA
tensors and showed little bias for the moderate and low FA tensor at
10 dB. However, there is a substantial bias between MD estimated
with PE6 and Jones30 at low SNR. This bias persists to moderate
SNR and can be seen to be 2.2% for high FA tensors at 20 dB. The
PE6 scheme demonstrated small, but consistently lower MD
variability than the Jones30 with decreasing differences at high
SNR. (Note that the circles are lower than the triangles in Fig. 11,
panel D.)

Discussion

Selecting a diffusion weighting scheme

DTI results are systematically and statistically different when
comparing studies using different, well-balanced DW schemes, a



Fig. 9. Simulated directional sensitivity and bias for the PE6 relative to Jones30 DW scheme. Differences in the bias magnitude (Δ|bias|) and standard deviations
(Δσ) are plotted for FA (first row) and MD (second row). For the PEV, angular bias (AB) and variability (AV) are reported (third row). The 6 directions of the
6 DW direction schemes are indicated by circled markers. To aid in interpretation, the small spheres to the left of the polar plots display the same data as the
corresponding polar plot.
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result that is in agreement with simulations. However, the
magnitude of these differences is less than might be expected from
other experimental parameters, such as changes in the number of
DW images, number of averages, physiological noise, scanner
hardware, or other factors that might influence the SNR. At 1 STE
for example, using a DW scheme with 6 rather than 30 directions
results in a differential orientation bias of approximately (1) 0.02
[FA] for FA, (2) 0.02×10−3 mm2/s for MD, and (3) 2° for PEV
orientation. In order for these effects to be of clinical concern, they
should be of the magnitude or greater than intra-session and inter-
session reproducibility effects. In comparison for 1 STE with 30
directions, the intra-session test–retest variability of FA is ~0.1
Table 1
Qualitative description of results: PE6 relative to Jones30

Metric Type of error Tensor PEV Alignment

With DW
direction

Between DW
direction

FA a Bias ↑/↓ ↑↑
Variability ↑↑ ↓↓

MDb Bias ↑/~ ↑/~
Variability ~ ~

PEVc Bias ↑↑/↓ ↑/↓↓
Variability ↓↓ ↑↑

a FA bias was consistently larger with acquired data than in simulation.
b Differences in MD were small and well visualized on the single tensor

simulations for a high FA tensor (Fig. 10, right column).
c The trends for PEV bias are best visualized on single tensor simulations

(Fig. 10, row 6).
[FA], MD is ~0.05×10−3 mm2/s, and PEV is ~5° (Farrell et al.,
2006). In other words, compared to test–retest reproducibility and
impact of SNR, the effects of the DW schemes are minor. We
conclude that analyses from studies with different, but well-
balanced DW scheme protocols are comparable.

When planning DTI studies, it is important to separate issues
related to precision (reproducibility) and accuracy (bias) of each
scheme. The optimized PE6, PE10, PE15 and Jones30 schemes
tested in this study have comparable precision (e.g., Δσ in Fig. 8).
This means that they have comparable powers to discriminate
normal from abnormal. For group studies (ROI-based or voxel-
based), these schemes should perform equally well. The bias
becomes an issue if one needs to compare results between different
DW schemes. If datasets are simply compared with values
reported in the literature, the bias reported in this study should
be a minor influence. However, if results from two different
schemes are statistically compared within one study, great care
should be exercised. The difference due to the PE6 and Jones30
DW schemes could be non-negligible when a group study is
performed in brain regions with a specific fiber orientation, and the
fiber is oriented in such a way that the diffusion weightings
observed with the PE6 and Jones30 difference are maximally
different. For example, suppose that 10 subjects are scanned once
with each of two protocols, once with Jones30 and again with five
repetitions of PE6. If one assumes good registration and
anatomical correspondence, FA inter-session variability is ~0.1
[FA] (Farrell et al., 2006) with 1 STE (30 DWIs+5 b0s,
approximately 3.5–4 min of scan time) and maximum orientation
bias difference is ~0.03 [FA] (Fig. 7). A simple power analysis
reveals that there is an 11% chance that a t-test would detect at
least one significant difference due the bias (Altman, 1999). If 50



Fig. 10. Simulated impact of DW scheme on tensor metrics for the PE6 scheme relative to the Jones30 scheme. Differential impact of DW schemes on the
underlying tensors can be appreciated by comparing the orientation dependence of the precision and accuracy of each contrast for a tensor with low, moderate,
and high FA.
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subjects are studied, the likelihood of detection increases to 54%.
The amount of the bias decreases as the SNR increases (Fig. 11).
Therefore, the difference could be harder to detect as the scan time
increases. These conditions are met when the same subject is
scanned on the same scanner. In reality, variability in group studies
is dominated by variability among the subjects, scanner perfor-
mance and image registration quality, which is not included in the
above power analysis. Nonetheless, it is always advisable to use
the same imaging parameters as much as possible for group
studies. The choice of a diffusion weighting scheme should be
recognized as one of the important parameters that should be
considered.



Fig. 11. Simulated interactions of SNR, tensor orientation and DW scheme. Noise level and orientation demonstrate a differential impact on the precision and
accuracy of diffusion tensor contrasts.
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In this study, cardiac gating was not applied. It is well known
that cardiac pulsation can have a profound effect on DTI results
(Golay et al., 2002; Jones and Pierpaoli, 2005), which could be a
major contribution to the intra- and inter-session reproducibility
noted in this study. Studies with cardiac gating should have better
reproducibility and the relative significance of the PE6− Jones30
difference, described above, may increase in such studies.
Unfortunately, cardiac gating has not been widely accepted in
clinical studies because it lengthens the scanning time and subject
motion conditions and arrhythmia can occasionally cause gating
instability.

When a protocol is being designed for a new study, a DW
scheme with a larger number of gradient orientations should be
considered because of the decreased directional sensitivity (little
orientation dependence for precision and accuracy) even though
the improvement could be minor, as has been demonstrated in this
and previous (Jones, 2004) studies. However, schemes with fewer
DW directions may have practical benefits that are not considered
in this paper such as more efficient diffusion weighting. Repeated
measurements (e.g., five repetition of PE6 as opposed to one
Jones30 measurement) allow variability assessment among
redundant datasets, which carry important information about
image corruption and coregistration errors. Another example is
that the observed signal can be increased by minimizing TE
(Pierpaoli et al., 1996) or by applying a more efficient diffusion
weighting scheme (Basser and Pierpaoli, 1996). For example, by
changing from a PE6 scheme to a Tetra6 scheme, TE is reduced
from 88 ms to 80 ms which corresponds to an 11% signal increase
for white matter (assuming an approximate T2 of 80 ms).
However, tradeoffs occur at the expense of increased condition
number, hence noise propagation, and the benefit must be
evaluated on a case by case basis (Batchelor et al., 2003; Skare
et al., 2000). For example, the orientation variability for the PE6

results at 1 STE is lower than it is for the Tetra6 results at 3 STE,
even though the SNR in the latter case is approximately

ffiffiffi
3

p
greater

(Fig. 8). Such a large increase in SNR cannot be achieved by TE
shortening, indicating that the PE6 scheme will always yield better
results than the Tetra6 scheme.
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A simple multivariate log-linear least-square fitting method was
used in this study. Recently, other fitting methods such as robust
tensor estimation methods (Chang et al., 2005; Cox and Glen, 2006;
Koay et al., 2006) have been introduced. Differences due to robust
and simple tensor estimation methods are systematic (Koay et al.,
2006), so caution must be used when comparing results from
studies using different methods. It would be an interesting area of
future research to evaluate if robust tensor estimation methods have
consistent impacts on bias and variability depending on tensor
orientation or DW scheme.

The close agreement of experimental and simulation results
reinforces the general purpose utility of single tensor simulation
models for investigating the performance of DTI protocols. The
correspondence between the acquired and simulated data was
especially strong for the variability measures and the patterns of
orientation dependence. There is a possible discrepancy between
Figs. 8 and 11. Namely, while the simulated data (Fig. 11)
indicate that the bias between PE6 and Jones30 decreases as
SNR goes up, the acquired data (1 STE versus 3 STE) indicate
that the bias persists with a high SNR dataset (3 STE). We suspect
that the bias at 3 STE (between the PE6 and Jones30 schemes)
may not be mitigated by SNR and is due to non-tensor behavior
(e.g., crossing fibers) seen in acquired MR data. Recently,
Behrens et al. (2006) demonstrated that approximately one third
of brain voxels satisfy the criteria for having multiple fiber
populations. If there are a significant number of voxels with the
non-tensor behavior, it is reasonable to expect that differences
between PE6 and Jones30 results manifest as bias with respect to
high SNR data because the gold standard was determined by
using all data acquired with Jones30 scheme. This difference
should be sensitive to b-value (the higher the b-value, the more
pronounced the effect Frank, 2002). Nonetheless, the effect of
non-tensor behavior is not considered in this article and is a
fascinating future project.

Orientation analysis

In addition to conventional ROI-based analysis, we performed
experiment (Fig. 7) and simulation-based (Fig. 9) orientation
analysis. Even though many of the findings in this study simply
confirmed results from previous simulation studies, we believe
that it is an important effort to reconcile previous studies. FA, MD,
and PEV showed consistent orientation patterns of bias and
variability in both experiments and simulation data, as summar-
ized in Table 1. FA precision and accuracy showed the greatest
spatial dependence on the DW scheme, with a decrease in FA and
increased variability roughly corresponding to DW directions. MD
measurements were insensitive to DW scheme and thus to tensor
orientation, while PEV measurements showed some dependence
on DW scheme. The differences between the effect sizes and
precise boundaries between the experimental and simulated data
can be attributed to (1) spatially varying SNR, (2) differences
between specified and realized DW directions, and (3) partial
volume effects. As the sign, magnitude, and spatial patterns of the
effects were highly consistent between simulation and acquired
MR experiments, the data suggest that the single tensor model is
useful for characterizing the behavior of differences between DW
schemes.

Increasing the directional resolution of the DW scheme decreased
the range of the orientation dependence for all contrasts (Fig. 8).
This means that a DW scheme with more directions has a smooth
precision and accuracy profile, which does not change profoundly
as a function of fiber orientation. On average, low directional
resolution showed increased FA and MD bias and variability.
These effects are seen in Fig. 8 at both 1 and 3 STE (b0 SNR
approximately 18 dB (7.9:1) and 20 dB (10:1)).

Single tensor simulations (Fig. 10) provide intuition on how
aggregate profiles develop by considering mean behavior over
ROIs. Orientation dependence is dominated by moderate and high
FA tensors, as these tensors exhibit the greatest degree of orien-
tation variability. FA bias decreased and variability increased for
tensors aligned with the DW directions for PE6 relative to Jones30
(Fig. 10). Neither MD bias nor variability showed strong orientation
dependence. The relationship between PEV, DW direction, and
estimation reliability was complicated, however, in general AV
tended to decrease and AB increase when the PEV was aligned with
a DW direction.

The SNR tensor simulations demonstrate how these interac-
tions generalize to other biological contexts or SNR levels
(Fig. 11). At less than 15 dB (5.6:1), tensor estimation is excep-
tionally noisy, eigenvalues are notably biased, and there is sub-
stantial angular dependence introduced for the 6 DW direction
scheme. At greater than 30 dB (31.6:1), neither minimal bias,
orientation dependence, nor DW scheme dependence is apparent
in either the FA or MD. Therefore, low SNR tends to exacerbate
the orientation dependence of DTI contrast estimation and
differences due to DW schemes.

Conceptualizing results

The results of this study are in agreement with Jones (2004) in
that the error orientation profiles can be thought of “as a rubber
sheet, and the sampling vectors as ‘fingers’” that serve to even out
the surfaces. In other words, more independent sampling directions
result in less orientation dependence in the precision and accuracy
of derived quantities, when the total number of DW directions is
held constant. Yet, these “fingers” are a bit more complex than
weights on a surface serving to improve estimation.

The choice between sampling at independent directions versus
repeated directions can be thought of as a tradeoff between shape
(e.g., FA and MD) and orientation (e.g., PEV). The potential
information about a tensor contained in a set of sampled DW
directions is dependent on the tensor and noise. The results from
this study (both simulation and in vivo measurements) show that
estimation accuracy and precision of contrasts are not necessarily
optimal for tensors aligned with the DW directions. This can be
intuitively appreciated by considering a “diffusion peanut” for a
prolate tensor (Jones and Basser, 2004). The physical diffusion
process gives rise to a 3D diffusion profile, which is then sampled
by DW imaging. The diffusion peanut is the conceptual
representation of the diffusivity measured in each direction. In
the case of a prolate tensor with high anisotropy, the derivatives
of the spatial profiles of the diffusion peanut are relatively low at
the poles and the equator. Sampling several locations (e.g.,
acquiring DW images with diffusion sensitization along these
directions) in these regions would tell little about the orientation
of the tensor, yet these would prove useful in determining
anisotropy. Conversely, between the poles and equator, the profile
of the diffusion peanut changes more rapidly, which well indicates
orientation, but tells little about anisotropy. Furthermore, when
noise is considered, different sampling directions may be
determined with different accuracies due to varying signal
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attenuation and/or spatially varying SNR (e.g., due to parallel
imaging techniques).

The results from this study agree with this analogy as we note
that orientations of improved FA accuracy correspond to the orien-
tations of decreased PEV accuracy. This effect can be thought
of as a tradeoff between measuring the shape of the tensor and
the orientation of the tensor. The high directional resolution
scheme minimizes the variability for a tensor of unknown
orientation, while a change to a low directional resolution scheme
has varying impacts based on the orientation of the underlying
tensor. If a DW scheme over samples slowly changing regions of
the diffusion profile, the eigenvalues (hence, FA) will be relatively
better determined. While if the rapidly changing regions of the
diffusion profile are over sampled, the orientation (hence, PEV)
will be relatively better determined. In light of this conceptual
model, the experimental (Fig. 7) and simulation (Fig. 10) results are
not surprising.

There clearly is inhomogeneity (orientation-dependent varia-
tion) in bias and variability. The inhomogeneity is not random and
is related to sampling orientations. For FA, the maxima (or
minima) correspond well to the sampling orientations, but for MD
and PEV, the maxima or minima agree less well with the sampled
orientations. In some cases, the perception of correspondence may
be a function of the window-level of the figures. However, the
phenomena are likely real, and may be explained by the
contributions of all sampling directions and the secondary and
tertiary eigenvectors.

Conclusion

This study characterizes how the number of directions in a DW
scheme, impacts the precision and accuracy of in vivo fractional
anisotropy (FA), mean diffusivity (MD) and principal eigenvector
(PEV) findings and provides a principled theoretical framework to
support and interpret the in vivo findings with simulation results.
The observed differences in the DTI contrasts due to different DW
schemes are shown to be small relative to intra-session variability.
This result suggests that typical clinical studies, which use similar
protocols but different DW schemes, are readily comparable within
the experimental precision.
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Appendix A. Precision and accuracy of the PEV orientation

Bias, variability and mean differences between PEV were
assessed with metrics illustrated by the cartoons in Appendix Fig.
A1. First, the mean PEV is computed in two steps: (1) all PEVs
were reoriented (either rotated 180° or not) so that they were within
90° of the gold standard PEV, and (2) the mean PEV was computed
by component-wise averaging, followed by normalization to unit
length. The angular variability (AV) was computed as the mean
angle between each observation and the mean PEV,

AV ¼ 1
N

XN
i¼1

cos�1 PEVi&
P
PEV

� �
;

where • denotes a vector dot product. Angular bias (AB) was
defined as the mean angular differences between the mean PEVand
the gold standard PEV,

AB ¼ cos�1ðPPEV&PEVgsÞ:
Since the number of observations per voxel was limited in the
region of interest studies, angular errors were assessed by the mean
angular difference (MAD), which is the mean angular difference
between each observation and the gold standard,

MAD ¼ 1
N

XN
i¼1

cos�1 PEVi&PEVgs

� �
:

Note that the MAD metrics has contributions from both bias and
variability. In analogy with the familiar bias, variance, mean square
error (MSE) relationship:

MADVAVþAB:

The analogy holds well with the physical interpretations of the types
of error. MAD and MSE are weighted averages of the distance of
observations to the actual value. AV and variance are measures of
spread of the observations about the observation mean, while AB
and bias represent the distance from the observation mean to the
actual value.
fined as the mean angle between observed vectors and the mean vector, while
ld standard (GS) reference vector. The mean angular difference (MAD, panel
vals indicate the mean angle of the encompassed arcs.

http://www.nbirn.net
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Table A1

Jones30 gradient table
Index
 Gx
 Gy
 Gz
1
 1.000
 0.000
 0.000

2
 0.166
 0.986
 0.000

3
 −0.110
 0.664
 0.740

4
 0.901
 −0.419
 −0.110

5
 −0.169
 −0.601
 0.781

6
 −0.815
 −0.386
 0.433

7
 0.656
 0.366
 0.660

8
 0.582
 0.800
 0.143

9
 0.900
 0.259
 0.350

10
 0.693
 −0.698
 0.178

11
 0.357
 −0.924
 −0.140

12
 0.543
 −0.488
 −0.683

13
 −0.525
 −0.396
 0.753

14
 −0.639
 0.689
 0.341

15
 −0.330
 −0.013
 −0.944

16
 −0.524
 −0.783
 0.335

17
 0.609
 −0.065
 −0.791

18
 0.220
 −0.233
 −0.947

19
 −0.004
 −0.910
 −0.415

20
 −0.511
 0.627
 −0.589

21
 0.414
 0.737
 0.535

22
 −0.679
 0.139
 −0.721

23
 0.884
 −0.296
 0.362

24
 0.262
 0.432
 0.863

25
 0.088
 0.185
 −0.979

26
 0.294
 −0.907
 0.302

27
 0.887
 −0.089
 −0.453

28
 0.257
 −0.443
 0.859

29
 0.086
 0.867
 −0.491

30
 0.863
 0.504
 −0.025
Table A2

Partitions of the Jones30 gradient table
Partitioning scheme
 Indices of DW directions
Tetra6
 8, 12, 13, 20, 21, 22

PE6
 5, 8, 11, 23, 24, 27

PE10
 1, 6, 8, 10, 12, 19, 22, 24, 25, 29

PE15
 2, 3, 4, 7, 11, 12, 13, 15, 20, 21, 23, 25, 27, 29, 30
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